Genetic Engineering

Genetic Engineering
Genetic engineering, also called genetic modification or genetic manipulation, is the direct manipulation of an organism's genes using biotechnology. It is a set of technologies used to change the genetic makeup of cells, including the transfer of genes within and across species boundaries to produce improved or novel organisms. New DNA is obtained by either isolating and copying the genetic material of interest using recombinant DNA methods or by artificially synthesising the DNA. A construct is usually created and used to insert this DNA into the host organism. The first recombinant DNA molecule was made by Paul Berg in 1972 by combining DNA from the monkey virus SV40 with the lambda virus. As well as inserting genes, the process can be used to remove, or "knock out", genes. The new DNA can be inserted randomly, or targeted to a specific part of the genome.

An organism that is generated through genetic engineering is considered to be genetically modified (GM) and the resulting entity is a genetically modified organism (GMO). The first GMO was a bacterium generated by Herbert Boyer and Stanley Cohen in 1973. Rudolf Jaenisch created the first GM animal when he inserted foreign DNA into a mouse in 1974. The first company to focus on genetic engineering, Genentech, was founded in 1976 and started the production of human proteins. Genetically engineered human insulin was produced in 1978 and insulin-producing bacteria were commercialised in 1982. Genetically modified food has been sold since 1994, with the release of the Flavr Savr tomato. The Flavr Savr was engineered to have a longer shelf life, but most current GM crops are modified to increase resistance to insects and herbicides. GloFish, the first GMO designed as a pet, was sold in the United States in December 2003. In 2016 salmon modified with a growth hormone were sold.

Genetic engineering has been applied in numerous fields including research, medicine, industrial biotechnology and agriculture. In research GMOs are used to study gene function and expression through loss of function, gain of function, tracking and expression experiments. By knocking out genes responsible for certain conditions it is possible to create animal model organisms of human diseases. As well as producing hormones, vaccines and other drugs, genetic engineering has the potential to cure genetic diseases through gene therapy. The same techniques that are used to produce drugs can also have industrial applications such as producing enzymes for laundry detergent, cheeses and other products.

Classification Criteria

For more information about how H+ classifies products and technologies relevant to human body enhancement, please review our Classification Criteria.

Industry Players
Genetic Engineering
Eyes
United States

Genetic Engineering
Eyes
United States

Genetic Engineering
Body
United States

Genetic Engineering
Body
United States

Genetic Engineering
Body
Switzerland

Genetic Engineering
Eyes
United States

Genetic Engineering
Eyes
France

Genetic Engineering
Body
United States

Genetic Engineering
Body
United States

Genetic Engineering
Body
United States

Wearable TechnologyGenetic Engineering
EyesBody
Switzerland

Genetic Engineering
Body
United States

Genetic Engineering
Body
United States

Genetic Engineering
Body
United States

Genetic Engineering
Body
Netherlands

Genetic Engineering
Brain
United States

Related
News