Being limited to telling the hand to grip or release isn’t a problem if the hand knows what to do next

Being limited to telling the hand to grip or release isn’t a problem if the hand knows what to do next
September 13, 2019
From This prosthetic arm combines manual control with machine learning on TechCrunch:

imagine a person with their arm amputated above the elbow controlling a smart prosthetic limb. With sensors placed on their remaining muscles and other signals, they may fairly easily be able to lift their arm and direct it to a position where they can grab an object on a table.

But what happens next? The many muscles and tendons that would have controlled the fingers are gone, and with them the ability to sense exactly how the user wants to flex or extend their artificial digits. If all the user can do is signal a generic “grip” or “release,” that loses a huge amount of what a hand is actually good for.

and

Prosthesis users train a machine learning model by having it observe their muscle signals while attempting various motions and grips as best they can without the actual hand to do it with. With that basic information the robotic hand knows what type of grasp it should be attempting, and by monitoring and maximizing the area of contact with the target object, the hand improvises the best grip for it in real time.

From A smart artificial hand for amputees merges user and robotic control on EPFL News:

“When you hold an object in your hand, and it starts to slip, you only have a couple of milliseconds to react,” explains Aude Billard who leads EPFL’s Learning Algorithms and Systems Laboratory. “The robotic hand has the ability to react within 400 milliseconds. Equipped with pressure sensors all along the fingers, it can react and stabilize the object before the brain can actually perceive that the object is slipping. ”

The video is worth watching.