Bionic Prosthetics

The Market for Bionic Prosthetics

From Medical Bionic Implants And Exoskeletons Market Projected CAGR of 7.5% During the period 2017-2027 – The Edition Truth

The global medical bionic implants and exoskeletons market stood at U$ 454.5 Mn in 2016. It is expected to expand at a CAGR of 7.5% during the period 2017-2027 to reach U$ 1,001.4 Mn. Factors such as rising amputation rates, diabetes, arthritis, trauma cases and expanding ageing demographics have led to a higher number of bionic implants and exoskeletons procedures. According to National Center for Health Statistics, 185,000 new amputations are consistently being performed in the U.S every year. Advancement in new robotics technology (mind-controlled bionic limbs & exoskeletons) coupled with 3D printing is also positively impacting the growth of the market.

This is just the market for addressing a disability or impairment (aka “fixing”). There will be a market for intentional augmentation (aka “improving”).

Portuguese startup develops a smart glove to increase strength and coordination by augmenting the motion of palm and digits

From The Nuada smart glove gives your hand bionic powers | TechCrunch

The Nuada is a smart glove. It gives back hand strength and coordination by augmenting the motions of your palm and digits. It acts as an electromechanical support system that lets you perform nearly superhuman feats or simply perform day-to-day tasks. The glove contains electronic tendons that can help the hand open and close and even perform basic motions and a sensor tells doctors and users about their pull strength, dexterity, and other metrics.

“We then use our own electromechanical system to support the user in the movement he wants to do,” said Quinaz. “This makes us able to support incredible weights with a small system, that needs much less energy to function. We can build the first mass adopted exoskeleton solutions with our technology.”

If we increase human empathy by 30 percent, would we still have war?

From The Biomechatronic Man | Outside Online

On it are the PowerPoint slides of his next big project, a breathtaking $100 million, five-year proposal focused on paralysis, depression, amputation, epilepsy, and Parkinson’s disease. Herr is still trying to raise the money, and the work will be funneled through his new brainchild, MIT’s Center for Extreme Bionics, a team of faculty and researchers assembled in 2014 that he codirects. After exploring various interventions for each condition, Herr and his colleagues will apply to the FDA to conduct human trials. One to-be-explored intervention in the brain might, with the right molecular knobs turned, augment empathy. “If we increase human empathy by 30 percent, would we still have war?” Herr asks. “We may not.”

and

The idea of an endlessly upgradable human is something Herr feels in his bones. “I believe in the near future, in a decade or two, when you walk down the streets of Boston, you’ll routinely see people wearing bionic systems,” Herr told ABC News in a 2016 interview. In 100 years, he thinks the human form will be unrecognizable. The inference is that the abnormal will be normal, beauty rethought and reborn. Unusual people like Herr will have come home.

We’re essentially replacing the eye and the optic nerve completely

From Blind Patients to Test Bionic Eye Brain Implants – MIT Technology Review

The maker of the world’s first commercial artificial retina, which provides partial sight to people with a certain form of blindness, is launching a clinical trial for a brain implant designed to restore vision to more patients. The company, Second Sight, is testing whether an array of electrodes placed on the surface of the brain can return limited vision to people who have gone partially or completely blind.

Also known as a bionic eye, all three devices are intended to bring back some vision in patients with a genetic eye disorder called retinitis pigmentosa. The disease causes gradual vision loss when light-sensing cells called photoreceptors break down in the retina—the tissue membrane that coats the back of the eye.

and

The new device, the Orion, borrows about 90 percent of its technology from the Argus II but bypasses the eye. Instead, an array of electrodes is placed on the surface of the visual cortex, the part of the brain that processes visual information. Delivering electrical pulses here should tell the brain to perceive patterns of light.

A major downside is the device requires a more invasive surgery than the Argus II. A small section of the skull needs to be removed to expose the area of the brain where the array of electrodes is placed. Because electrical brain implants carry risks like infection or seizures, the first clinical trial will be small, and the company will start off by testing the implant in patients who are completely blind.

Addressing disabilities is just the beginning for bionics

From Hugh Herr: The new bionics that let us run, climb and dance | TED.com

Hugh Herr is building the next generation of bionic limbs, robotic prosthetics inspired by nature’s own designs. Herr lost both legs in a climbing accident 30 years ago; now, as the head of the MIT Media Lab’s Biomechatronics group, he shows his incredible technology in a talk that’s both technical and deeply personal — with the help of ballroom dancer Adrianne Haslet-Davis, who lost her left leg in the 2013 Boston Marathon bombing, and performs again for the first time on the TED stage.

Addressing disabilities is just the beginning. You can tell that Herr wants bionic prosthetics to augment humans beyond their limits.

An incredible TED Talk.

What does it mean to be a human?

From Why You Will One Day Have a Brain Computer Interface | WIRED

Bryan Johnson, an entrepreneur who in 2013 made a bundle by selling his company, Braintree, to Paypal for $800 million. Last year, he used $100 million of that to start Kernel, a company that is exploring how to build and implant chips into the skulls of those with some form of neurological disease and dysfunction, to reprogram their neural networks to restore some of their lost abilities.

When asked why humans have to manipulate their brains, Jonhnson replies:

Humans currently reign supreme on planet Earth, because we are the most powerful form of intelligence. So therefore, we decide who we eat, who we have as pets, who we allow to go extinct, who is saved, who is neutered, who can reproduce. We are currently developing a new form of intelligence in the form of AI that is increasingly capable, whether it’s conscious or not. For humans to be relevant in a matter of decades there is no choice other than to unlock our brains and intervene in our cognitive evolution. If you try to imagine a world where we are happy 30, 40, 50 years from now, there is no version of that future where we have not been able to figure out how to read and write our neural code.

I met one of the neuroscientists behind Kernel at the TED Global 2017 conference. Quite interesting conversation.

Bionik Laboratories Explores Voice-Controlled Exoskeleton

From This exoskeleton can be controlled using Amazon’s Alexa – The Verge

Bionik Laboratories says it’s the first to add the digital assistant to a powered exoskeleton. The company has integrated Alexa with its lower-body Arke exoskeleton, allowing users to give voice commands like “Alexa, I’m ready to stand” or “Alexa, take a step.”

Movement of the Arke, which is currently in clinical development, is usually controlled by an app on a tablet or by reacting automatically to users’ movements. Sensors in the exoskeleton detect when the wearer shifts their weight, activating the motors in the backpack that help the individual move. For Bionik, adding Alexa can help individuals going through rehabilitation get familiar with these actions.

Voice-controlled exoskeleton is an interesting way to overcome the complexity of creating sophisticated brain-machine interfaces, but current technology has a lot of limitations. For example, Alexa doesn’t have yet voice fingerprinting, so anybody in the room could, maliciously or not, utter a command on behalf of the user and harm that person with an undesired exoskeleton movement at the wrong time.

Nonetheless, these are valuable baby steps. If you are interested in Bionik Laboratories, you can see a lot more in their on-stage presentation at IBM Insight conference in 2015.

Did you know that the wheelchair was invented 1500 years ago?

Omega Ophthalmics turning the human eye into a platform for AR

From Omega Ophthalmics is an eye implant platform with the power of continuous AR | TechCrunch

… lens implants aren’t a new thing. Implanted lenses are commonly used as a solve for cataracts and other degenerative diseases mostly affecting senior citizens; about 3.6 million patients in the U.S. get some sort of procedure for the disease every year.

Cataract surgery involves removal of the cloudy lens and replacing it with a thin artificial type of lens. Co-founder and board-certified ophthalmologist Gary Wortz saw an opportunity here to offer not just a lens but a platform to which other manufacturers could add different interactive sensors, drug delivery devices and the inclusion of AR/VR integration.

Maybe there’s a surprisingly large audience among the over 60 that is willing to try and get a second youth through biohacking. Maybe over 60s will become the first true augmented humans.

Chinese researchers develop colour-shifting electronic skin

From Colour-shifting electronic skin could have wearable tech and prosthetic uses – IOP Publishing

researchers in China have developed a new type of user-interactive electronic skin, with a colour change perceptible to the human eye, and achieved with a much-reduced level of strain. Their results could have applications in robotics, prosthetics and wearable technology.

…the study from Tsinghua University in Beijing, employed flexible electronics made from graphene, in the form of a highly-sensitive resistive strain sensor, combined with a stretchable organic electrochromic device.

ReWalk Robotics makes progress with its soft exoskeleton

From ReWalk Robotics shows off a soft exosuit designed to bring mobility to stroke patients | TechCrunch

The version on display is still a prototype, but all of the functionality is in place, using a motorized pulley system to bring mobility to legs impacted by stroke.

The device, now known as the Restore soft-suit, relies on a motor built into a waistband that controls a pair of cables that operate similarly to bicycle brakes, lifting a footplate in the shoe and moving the whole leg in the process. The unaffected leg, meanwhile, has sensors that measure the wearer’s gait while walking, syncing up the two legs’ movement.

The Human Body as a battery for bionic prosthetics

From Your body is a big battery and scientists want to power gadgets with it – The Verge

There are many ways self-powered devices can work. One is piezoelectric energy, which is generated when you apply pressure to certain materials. Another method, more common in the public imagination, is harvesting movement. But while movement seems obvious, it’s not practical to have a device that only works when you’re in motion. So, for many researchers, the best source of energy is body heat, or thermoelectric generation.

Thermoelectric generation works because our bodies are almost always a different temperature from the air outside. Thermoelectric generators pick up on the temperature difference and then use that to create energy, says Daryoosh Vashaee, an electrical engineer at North Carolina State University. Last year, his team built a tiny device that did just that. It’s a metallic tab that can be embedded in a shirt or worn on an armband.

149 research papers on brain augmentation

From Augmentation of Brain Function: Facts, Fiction and Controversy | Frontiers Research Topic

Augmentation of brain function is no longer just a theme of science fiction. Due to advances in neural sciences, it has become a matter of reality that a person may consider at some point in life, for example as a treatment of a neurodegenerative disease. Currently, several approaches offer enhancements for sensory, motor and cognitive brain functions, as well as for mood and emotions. Such enhancements may be achieved pharmacologically, using brain implants for recordings, stimulation and drug delivery, by employing brain-machine interfaces, or even by ablation of certain brain areas.

I plan to review all of them.

First 3D printed soft artificial heart 

From Researchers 3D print a soft artificial heart that works a lot like a real one | TechCrunch

The heart was created using a 3D-printed method that lets the researchers make a complex inner structure while still using soft, flexible material as its structure. The whole thing is basically one single part (a “monoblock”), so there’s no need to worry about how different internal mechanisms fit together — except at the input and output ports, where blood would come and go.

In tests the heart worked quite well, pushing a blood-like fluid along against body-like pressures. There is, of course, a catch.

This heart is a proof of concept, not built for actual implantation — so the materials they made it from don’t last more than a few thousands beats. That’s about half an hour, depending on your heart rate

DARPA Grants $65 Million for Advanced Brain-Computer Interfaces

From U.S. to Fund Advanced Brain-Computer Interfaces – MIT Technology Review

Paradromics’s haul is as much as $18 million, but the money comes with a “moonshot”-like list of requirements—the implant should be not much bigger than a nickel, must record from one million neurons, and must also be able to send signal back into the brain. 

The US Department of Defense certainly wants to beat Elon Musk’s Neuralink at this game.

Cardiac tissue engineering: from matrix design to the engineering of bionic hearts

From Cardiac tissue engineering: from matrix design to the engineering of bionic hearts | Regenerative Medicine

The field of cardiac tissue engineering aims at replacing the scar tissue created after a patient has suffered from a myocardial infarction. Various technologies have been developed toward fabricating a functional engineered tissue that closely resembles that of the native heart. While the field continues to grow and techniques for better tissue fabrication continue to emerge, several hurdles still remain to be overcome. In this review we will focus on several key advances and recent technologies developed in the field, including biomimicking the natural extracellular matrix structure and enhancing the transfer of the electrical signal. We will also discuss recent developments in the engineering of bionic cardiac tissues which integrate the fields of tissue engineering and electronics to monitor and control tissue performance.

High-Performance Piezoresistive Electronic Skin with Bionic Hierarchical Microstructure and Microcracks

From High-Performance Piezoresistive Electronic Skin with Bionic Hierarchical Microstructure and Microcracks – ACS Applied Materials & Interfaces (ACS Publications)

Electronic skin (E-skin), a popular research topic at present, has achieved significant progress in a variety of sophisticated applications. However, the poor sensitivity and stability severely limit the development of its application. Here, we present a facile, cost-effective, and scalable method for manufacturing E-skin devices with bionic hierarchical microstructure and microcracks. Our devices exhibit high sensitivity (10 kPa–1) and excellent durability (10 000 cycles). The synergistic enhancement mechanism of the hierarchical microstructure and the microcracks on the conductive layers was discovered. Moreover, we carried out a series of studies on the airflow detection and the noncontact speech recognition.

Student develops a controllable Third Thumb to augment human capabilities

From Controllable Third Thumb lets wearers extend their natural abilities

For her graduate work at the Royal College of Art, Dani Clode created a wearable third thumb that can help its user carry more objects, squeeze lemons or play complex chords on the guitar.

The Third Thumb is a motorised, controllable extra digit, designed for anyone who wants to extend their natural abilities.

Dezeen has some great photos and videos of this.