DeepMind thinks that the hippocampus summarizes future events using a “predictive map”

From The hippocampus as a ‘predictive map’ | DeepMind

Our insights were derived from reinforcement learning, the subdiscipline of AI research that focuses on systems that learn by trial and error. The key computational idea we drew on is that to estimate future reward, an agent must first estimate how much immediate reward it expects to receive in each state, and then weight this expected reward by how often it expects to visit that state in the future. By summing up this weighted reward across all possible states, the agent obtains an estimate of future reward.

Similarly, we argue that the hippocampus represents every situation – or state – in terms of the future states which it predicts. For example, if you are leaving work (your current state) your hippocampus might represent this by predicting that you will likely soon be on your commute, picking up your kids from school or, more distantly, at home. By representing each current state in terms of its anticipated successor states, the hippocampus conveys a compact summary of future events, known formally as the “successor representation”. We suggest that this specific form of predictive map allows the brain to adapt rapidly in environments with changing rewards, but without having to run expensive simulations of the future.

I wonder what Jeff Hawkins thinks about this new theory.